DEI Talks | “The Limitations of Data, Machine Learning & Us” pelo Prof. Ricardo Baeza-Yates

“Machine learning (ML), particularly deep learning, is being used everywhere. However, not always is used well, ethically and scientifically. In this talk we first do a deep dive in the limitations of supervised ML and data, its key component. We cover small data, datification, bias, predictive optimization issues, evaluating success instead of harm, and pseudoscience, among other problems.  The last part is about our own limitations using ML, including different types of human incompetence: cognitive biases, unethical applications, no administrative competence, copyright violations, misinformation, and the impact on mental health. In the final part we discuss regulation on the use of AI and responsible AI principles, that can mitigate the problems outlined above.”

The Limitations of Data, Machine Learning & Us” será apresentada dia 10 de setembro, às 11:00, na sala B032. A entrada é livre mas sujeita a inscrição aqui.

Ricardo Baeza-Yates is the Director of Research at the Institute for Experiential AI of Northeastern University, as well as part-time professor at the Dept. of Computer Science of University of Chile. Before, he was VP of Research at Yahoo Labs, based in Barcelona, Spain, and later in Sunnyvale, California, from 2006 to 2016. He is co-author of the best-seller Modern Information Retrieval textbook published by Addison-Wesley in 1999 and 2011 (2nd ed), that won the ASIST 2012 Book of the Year award. From 2002 to 2004 he was elected to the Board of Governors of the IEEE Computer Society and between 2012 and 2016 was elected for the ACM Council. In 2009 he was named ACM Fellow and in 2011 IEEE Fellow, among other awards and distinctions. He obtained a Ph.D. in CS from the University of Waterloo, Canada, and his areas of expertise are responsible AI, web search and data mining plus data science and algorithms in general.”

Posted in DEI Talks, Destaque, Eventos, Notícias.