DEI Talks | “Task scheduling algorithms for fog architectures” by Prof. Celestino Lopes de Barros

Celestino Lopes de Barros is Professor at the Faculty of Science and Technology (FCT) of the University of Cape Verde (Uni-CV) since 2005. Graduated in Informatics in 2006 by the Instituto Superior de Educação, he obtained a Master’s degree in Electronic and Engineering and Telecommunications from the University of Aveiro in 2010. Holds the Certificate in Advanced Studies and has a PhD in Science and Technology from UaB and UTAD since 2021. His areas of interest are Cloud computing and its paradigms. Author of several papers focusing on ‘Job Scheduling in Fog Paradigm’.

Join us on the 11th of May, at 14:30, in room I-105 FEUP, for the presentation of “Task scheduling algorithms for fog architectures”

Abstract:

According to the author’s knowledge task scheduling in fog paradigm is highly complex and in the literature there are still few studies on it. In the cloud architecture, it is widely studied and in many researches, it is approached from the perspective of service providers. Trying to bring innovative contributions in these areas, we propose a solution to the context-aware task-scheduling problem for fog paradigm. In our proposal, different context parameters are normalized through Min Max normalization, requisition priorities are defined through the application of the Multiple Linear Regression (MLR) technique and scheduling is performed using Multi-Objective Non-Linear Programming optimization (MONLIP) technique.

DEI Talks | Fluent API: A software engineering technique with type theoretical implications by Yossi Gil

Joseph (Yossi) Gil is an Associate Professor at the Faculty of Computer Science of the Technion, Israel Institute of Technology. His publications were in diverse areas including distributed systems, image processing,  algorithms, PRAMs and parallel computing, databases, concepts of object oriented programming, numerical algorithms, … His B.Sc. (in physics summa cum laude), M.Sc. (computer science, summa cum laude) and Ph.D. were awarded by the Hebrew University in Jerusalem. Theoretical computer science, especially lower bounds and algorithms were his academic nursery, but he is also very keen on programming in various programming languages. His current research interest is in type systems and applications of machine learning to software engineering and numerical algorithms.

Join us on the 27th of April, at 14:30, in room B016 FEUP, for the presentation of “Fluent API: A software engineering technique with type theoretical implications”.

Abstract:

 A chain of method calls in an OO language, such as a.b().c(d).e(f,g).h().i()… is what the industry calls fluent API. In such a chain, the return value of all but the last invocation, is the receiver of the next invocation. The technique is advertised and used as a powerful software engineering tool. The technique is also used to embed domain specific languages (DSLs), such as SQL, in a host general programming language, such as Java. In this talk, I will present the technique, and the fundamental theoretical questions: How should one design the classes and methods so that fluent API works the way it is supposed to? What is required from the type system of the host programming language to admit certain chains, and forbid others?

The presentation will survey a series of publications showing deep correspondence between type systems and the theory of automata: finite state automata, pushdown automata, etc.

DEI Talks | Formal Verification of Distributed Systems by Julien Brunel and David Chemouil

Julien Brunel and David Chemouil are senior researchers at ONERA, in Toulouse, specialized in formal specification and verification. Together with Nuno Macedo and Alcino Cunha (INESC TEC) they designed the 6th version (dubbed Electrum until recently) of the Alloy language and tool (originally proposed by the MIT). In recent years, Julien Brunel and David Chemouil have also been studying the verification of distributed algorithms. A recent highlight is the first mechanical proof of correctness of the distributed maintenance algorithm of the Chord peer-to-peer protocol, as well as formal techniques for the complete, semi-automatic verification of infinite-state systems, such as distributed algorithms.

Join us on the 8th April, at 14:30, in room I-105 of FEUP, for the presentation of this work.

Abstract:

The verification of distributed systems is challenging because these systems combine a rich structure, a high number of elements and a non-trivial temporal evolution. A trade-off between automation and completeness of the verification has to be made. In particular, one can use theorem provers, which offer complete confidence but tend to require considerable expertise and effort. Another option is to use model checkers, which offer complete automation, but cannot handle complex data structures and configurations.

In this talk, they will present recent work on verification techniques for distributed systems that are automatic and “as complete as possible”, or complete and “as automatic as possible”. They will illustrate their work with the analysis of Chord, a scalable distributed hash table.

DEI Talks | JUMPING FINITE AUTOMATA by Prof. Alexander Meduna

Prof. Alexander Meduna (born 1957 in Olomouc, Czech Republic ) is a theoretical computer scientist and expert on compiler design, formal languages and automata. He is a professor of Computer Science at the Brno University of Technology. Formerly, he taught theoretical computer science at various European and American universities, including the University of Missouri, where he spent a decade teaching advanced topics of formal language theory. He wrote over ninety papers related to theoretical computer science.

Join us on the 7th April, at 14:30, in room I-105 of FEUP, for the presentation of JUMPING FINITE AUTOMATA

Abstract:

This talk proposes a new investigation area in automata theory — jumping finite automata. These automata work like classical finite automata except that they read input words discontinuously — that is, after reading a symbol, they can jump over some symbols within the words and continue their computation from there. The talk gives several results concerning jumping finite automata in terms of commonly investigated areas of automata theory, such as closure properties. Most importantly, it achieves several results that demonstrate differences between jumping finite automata and classical finite automata. In its conclusion, the talk  formulates several open problems and suggests future investigation areas.

His latest book is Handbook of Mathematical Models for Languages and Computation

Meduna, Alexander; Tomko, Martin, Horacek, Petr (2019)

The Institution of Engineering and Technology, Stevenage, UK, ISBN: 978-1-78561-660-0

https://www.amazon.ae/Handbook-Mathematical-Models-Languages-Computation/dp/1785616595

His previous books include

  • Meduna, Alexander (2000). Automata and Languages: Theory and Applications. Springer Science & Business Media. ISBN 9781852330743.
  • Meduna, Alexander (2007). Elements of Compiler Design. CRC Press. ISBN 9781420063233.
  • Meduna, Alexander (2014). Formal Languages and Computation: Models and Their Applications. CRC Press. ISBN 9781466513457.
  • Meduna, Alexander; Švec, Martin (2005). Grammars with Context Conditions and Their Applications. John Wiley & Sons. ISBN 9780471736554.
  • Meduna, Alexander; Techet, Jiří (2010). Scattered Context Grammars and Their Applications. WIT Press. ISBN 9781845644260.
  • Meduna, Alexander; Zemek, Petr (2014). Regulated Grammars and Automata. Springer. ISBN 9781493903696.
  • Meduna, Alexander; Soukup, Ondřej (2017). Modern Language Models and Computation: Theory with Applications. Springer. ISBN 9783319630991.

CreativityTalks | Prof. António Sampaio da Nóvoa will be our next guest

There are many “futurisms” that suggest an education without schools, based on the immense possibilities of technologies and artificial intelligence. These “futurisms” gained strength with the pandemic and the different forms of isolation to which we have been subjected. But education does not take place in “confinement”, it always requires a relationship, an encounter, working together. This is not the time to announce the “death of school”, but rather to invent it anew.

“Inventing the School anew” will be the topic of the 6th Creativity Talk, presented by Professor *António Sampaio da Nóvoa, on March 17, at 18:00, at the FEUP’s Anfiteatro Nobre (B032).

The session will be moderated by Amélia Lopes, Full Professor and President of the Scientific Council of the Faculty of Psychology and Education Sciences of the University of Porto.

The participation in the lecture requires a (free) registration at Eventbrite (places available to the capacity of the room by order of registration).

If you cannot attend in person, you can attend remotely through the following address: https://youtu.be/V2I0h0EQBO0

*Bio

António Sampaio da Nóvoa is a Full Professor at the University of Lisbon. He holds a PhD in History from the University of Paris IV-Sorbonne and a PhD in Education Sciences from the University of Geneva. He was Rector of the University of Lisbon between 2006 and 2013. He was Portugal’s Ambassador to UNESCO between 2018 and 2021.

DEI Talks | The Digital Score – “What’s really going on {in} here?” by Prof. Craig Vear

Prof Craig Vear is a Research Professor at De Montfort University where he is also a director of the Creative AI and Robotics Lab in the Institute of Creative Technologies. His research is naturally hybrid as he draws together the fields of music, digital performance, creative technologies, artificial intelligence, creativity, gaming, mixed reality and robotics. He has been engaged in practice-based research with emerging technologies for nearly three decades, and was editor for The Routledge International Handbook of Practice-Based Research, published in 2022. His recent monograph The Digital Score: creativity, musicianship and innovation, was published by Routledge in 2019, and he is Series Editor of Springer’s Cultural Computing Series. In 2021 he was awarded a €2Million ERC Consolidator Grant to continue to develop his Digital Score research – digiscore.dmu.ac.uk 

Join us on the 24th February, at 14:30, in room B024 of FEUP, for the presentation and discussion of this project – Investigating Technological Transformation of the Music Score (DigiScore).

The opening section will position the digital score amongst a broader understanding of the function and purpose of all music scores: that of a communications interface between musicians. After defining that which signals a digital score as a different proposition, he will outline the research aims and objectives of the DigiScore project. Will position this research among the core principles of flow, phenomenology, embodiment, and media affect, and outline the focus of the research as seeking meaning-making from inside the creative acts of digital score musicking (Small 1989). The final section will outline some of the current new insights, and present key questions that he would wish to discuss with those present in the room as way of allowing their voice into the development of this researchers and expanding the community of research in this area.