DEI TALKS | “Let’s discuss about Models and Languages for embedded systems in Industry 4.0” by Prof. Julio Medina

“This talk proposes to have a conversation about the trends in conceptual modelling languages used for the design and analysis of real-time and embedded systems in the context of the ever changing industrial environments but never changing business demands”.

Let’s discuss about Models and Languages for embedded systems in Industry 4.0” will be presented February 1, at 11:00, room I-105, moderated by Prof. Gil Gonçalves (DEI).

Short Bio:
“Julio Medina is Associate Professor at Universidad de Cantabria, Spain. His main research areas include the modeling of real-time distributed systems for schedulability analysis and dependability, standards and languages for the representation of such models, and their usage for modular and component-based development software engineering strategies. He contributes to the OMG in the standardization of languages like SysML, MARTE, UCM, UTP, among others.”

Talk a Bit is back for its 12th edition

*Talk a Bit is back on stage at the FEUP Auditorium next Saturday, February 3.

The theme of this 12th edition, “Today’s Choices, Tomorrow’s World“, will highlight the profound impact of contemporary technological decisions on the future.

The programme will feature insightful talks and discussions on Artificial Intelligence (AI) and its role in health, smart cities and sustainable industries. Several experts will share with the public their knowledge on the latest technological advances and their future implications, promoting an environment conducive to learning and socializing opportunities.

Hugo Neves (MOG), Filipe Portela (IOTECH), Luís Valente (ILOF) and Tiago Reis (DIGESTAID) have all been confirmed as guest speakers in a programme (being updated) that can be seen here.

Registration is free but mandatory and must be submitted here.

*Talk a Bit is a technology conference organized by the students of the Master’s Degree in Informatics and Computing Engineering at the Faculty of Engineering of the University of Porto.

PhD Defense in Informatics Engineering : ”Highly reconfigurable smart component system”

Candidate
Luís Carlos de Sousa Moreira Neto

Date, Time and Place 
January 31, 14:15, Sala de Atos FEUP

President of the Jury
Carlos Miguel Ferraz Baquero-Moreno, PhD, Full Professor, Department of Informatics Engineering, Faculdade de Engenharia, Universidade do Porto.

Members
Julio Luis Medina Pasaje, PhD, Associate Professor, Departamento de Ingeniería Informática y Electrónica, Facultad de Ciencias, Universidad de Cantabria, Espanha;
António Eduardo Vitória do Espírito Santo, PhD, Assistant Professor, Department of Mechanical Engineering, Faculdade de Engenharia, Universidade da Beira Interior;
Pedro Nuno Ferreira da Rosa da Cruz Diniz, PhD, Full Professor, Department of Informatics Engineering, Faculdade de Engenharia, Universidade do Porto;
Luis Miguel Pinho de Almeida, Associate Professor with Habilitation, Department of Electrical and Computer Engineering, Faculdade de Engenharia, Universidade do Porto;
Gil Manuel Magalhães de Andrade Gonçalves, PhD, Assistant Professor, Department of Informatics Engineering, Faculdade de Engenharia, Universidade do Porto (Supervisor).

Abstract:
“Across all sectors of our society, efficiency is an increasingly paramount concern for a sustainable world. While the significance of efficiency spans all levels, it is at a large scale where the impacts of efficient practices are most prominently noticed. Industrial activities are an example of how efficiency traduces in visible results. It doesn’t require extensive reasoning to recognize that everyday increasingly affordable goods we consume are a direct outcome of these efficiency demands. The market is demanding new services and business models that center the end user in the product design. In the near future, consumers will be able to customize a product on-line, place a production order, and see it delivered, all in the same day. This remarkable possibility arises from of a combination of efficiency and flexibility within the production processes. Several names have been used to describe the same fundamental paradigm in both academic and industrial contexts: Factories of the Future, Smart Manufacturing and Industry 4.0, all remounting to the same technological advent. This concept has far-reaching implications, extending its influence across multiple technological domains, presenting a wealth of research opportunities and driving the need for innovative technologies. This thesis delves into two technological domains related with this new paradigm and tackles one key problem in either domain. Within the Cyber-Physical Production Systems (CPPS) domain, it addresses the problem of establishing a unified network of industrial assets where software and its connections to other assets are clearly discernible and recognized. On the Reconfigurable Manufacturing Systems (RMS) domain, it addresses the fast pace at which the production lines will have to reconfigure, in particular, how software will have to reconfigure in parallel with the production lines and the ease with which new software can be developed and deployed to meet emerging challenges. A solution to both problems emerges from the field of Component-Based Software Engineering (CBSE), where this thesis drew inspiration to develop an innovative Smart Component with enhanced software reconfiguration and deployment capabilities. The proposed system exploits using Linux, a general-purpose operating system, as the component runtime environment (RTE). A combination of shared memory for efficient component communication and parallel and reconfigurable computing properties for enhanced throughput allows the proposed system to meet established application performance standards while maintaining a high degree of flexibility and reusability. The Smart Component’s flexibility is demonstrated through the implementation of two component models. The IEC 61499 component model, designed to model event-driven distributed applications for industrial system monitoring and control, and the Smart Object Self-Description (SOSD), developed by the author to describe software components, their interconnections, and their associations with industrial assets. The IEC 61499 implementation was directly compared to existing RTEs, outperforming them in real-world use cases and equaling the performance of one RTE in a literature benchmark. Additional benchmarks to assess the Smart Component’s reconfiguration performance and simplified software component development method were proposed in this thesis. The effectiveness of the SOSD implementation was validated through its application in a real-world use case, furnishing other CPPS nodes with context regarding the origin of the collected data and the software components responsible for its processing. By using Linux as the RTE, a software layer traditionally dedicated to manage components was deemed unnecessary, due to the system’s ability to execute applications conforming to relevant performance standards, while showing superior software flexibility, and even outperforming existing RTEs which employ the traditional approach. Many runtime environments for software components exist, but few allow the deployment of components built in more than one programming language, and none – to the best of the author’s knowledge – allow the development of components in any language – provided that language is at least able to read and write to files. The simplicity of developing regular software program for Linux and converting it into a software component is a promising feature that should benefit the development of industrial control and monitoring applications by bringing along the benefits of multiple high-level programming languages.”

DEI TALKS | “Analyzing and Modeling Intelligent Systems Users’ Behavior in Digital Society” by Prof. Humberto Marques-Neto

“Information systems are ever-increasingly intelligent and present in the daily lives of people and companies, facilitating and modifying the performance of various activities. In addition to handling each system’s intrinsic data, data from its users’ interactions can contribute to identifying, modeling, and analyzing people’s behavior patterns. The data analysis from the usage of web systems and mobile applications and, in particular, from online social networks such as Twitter, Facebook, WhatsApp, Instagram, and TikTok (obviously respecting the privacy of users) can contribute to the understanding of some dynamics and specific behaviors of human beings.

In this talk, I will present how our research group has done the characterization, analysis, and modeling of the behavior of users of intelligent information systems, more specifically, users of online social networks and information systems that make information available in open data portals, to induce the development of new software that use machine learning and artificial intelligent algorithms. The information systems user behavior, together with patterns of social interaction and human mobility in urban centers, in addition to subsidizing decisions and policies of government agencies and institutions responsible for urban planning, could foster and even target software developers interested in creating innovative software with the potential to improve people’s lives in a digital and connected society.”

Analyzing and Modeling Intelligent Systems Users’ Behavior in Digital Society” will be presented January 25, at 14:00, room B006, moderated by Prof. Gil Gonçalves (DEI).

Short Bio:
Prof. Humberto T. Marques-Neto is a researcher and a professor in the Department of Computer Science at the Pontifical Catholic University of Minas Gerais (PUC Minas) in Belo Horizonte – Brazil. He holds a degree in Computer Science from the PUC Minas, a Master’s in Information Science, and a Ph.D. in Computer Science, both from the Federal University of Minas Gerais – UFMG. In the last few years, he has published some papers on the characterization and modeling of large-scale distributed system user behavior, online social network analysis and modeling, computing systems for mobile devices, and software engineering. He also coordinates (at PUC Minas) the Center of Technological Innovation and PUCTec, a Hub for Innovation and Business with about 30 startups. Since last August, he has been spending a one-year sabbatical as a Visiting Fellow in the Department of Computer Science of the University of Pisa.”

DEI TALKS| “Aprendizado colaborativo em redes neuronais artificiais” by Prof. Areolino de Almeida Neto

“Any task that cannot be carried out by a single agent requires the interaction of multiple agents aligned with the solution to the problem. Teamwork usually requires coordination between the members so that there are no conflicts and the result is more efficient. In the field of artificial learning, when one element is unable to fully learn the solution to a problem, it requires the participation of other “intelligent” elements to fully learn the solution. In this way, a collaborative learning system is presented, in which intelligent agents learn to collaborate with each other in order to achieve complete learning in a self-coordinated way (without a coordinator) and without the occurrence of conflicts between the intelligent elements. Specifically, it involves inserting other neural networks or other intermediate layers into an ANN in order to collaborate with the learning already acquired and thus add new knowledge to the system.”

This is how Prof. Areolino de Almeida Neto describes his presentation entitled “Collaborative learning in artificial neural networks”, which will take place on 15 November at 14:30, room B033.

The talk will be moderated by Prof Carlos Soares (DEI).

Short Bio

Areolino de Almeida Neto holds a Bachelor’s degree in Electrical Engineering from the Federal University of Maranhão (UFMA) in 1990, a Master’s degree in Aeronautical and Mechanical Engineering from the Technological Institute of Aeronautics (ITA) in 1998 and a PhD in Aeronautical and Mechanical Engineering from ITA / Universität Hannover (2004). He has experience in Electrical Engineering, Mechatronics and Computer Science, with an emphasis on Mechatronic Systems and Artificial Intelligence, working mainly on the following topics: neural networks, reinforcement learning, mobile robotics and manipulator robotics. Since 2015, he has been working as Coordinator of the Aerospace Engineering WG of the Secretariat of Science, Technology and Innovation (SECTI) of Maranhão, Brazil. He has been a permanent member of the Postgraduate Programme in Computer Science at UFMA since 2010, which has allowed him to publish several scientific articles on neural networks and reinforcement learning, and a book on multiple self-coordinating neural networks.

DEI TALKS | “Research projects and cooperation opportunities with São Paulo – Brazil” by Prof. Alessandro Santiago dos Santos

This presentation, which will take place on November 6, at 14:30, room I-105 (DEEC), will cover the main lines of research at the Instituto de Pesquisas Tecnológicas, São Paulo, Brazil, with a focus on projects related to Smart Cities and ICTs. Opportunities for collaboration in these areas will also be explored.

The talk will be moderated by Prof. Rosaldo Rossetti (DEI).

Alessandro Santiago dos Santos, Senior Researcher at the Instituto de Pesquisas Tecnológicas of the state of São Paulo (IPT), working in Brazilian Technological Research and Development for over 20 years, with digital transformation studies and projects. He is currently a visiting researcher at the Instituto Superior Técnico of the University of Lisbon, investigating issues related to smart, resilient and sustainable cities. In Brazil, he is the Business Development Manager of IPT’s digital technologies unit; coordinator and professor of the Professional Master’s in Applied Computing at IPT, and was a member of the contingency committee for dealing with the Coronavirus in São Paulo, working on the Intelligent Monitoring System, which supported the government in dealing with the pandemic. He holds a PhD in Transport Engineering and a Master’s degree in Computer Science from the University of São Paulo, and a Bachelor’s degree in Computer Science from the Federal University of Mato Grosso. Awards, academic and business recognitions are part of his professional career, including managerial experience in companies such as SENAC, IBM and IPT. Projects, consultancy and research in areas such as: Intelligent Transport Systems, Internet of Things, Industry 4.0, Smart and Sustainable Cities. International cooperation with Europe on R&D projects in IT and Transport, as well as advising the World Economic Forum on the data policy platform at the Centre for the 4th Industrial Revolution (C4IR Brasil).”

INForum 2023 – September 7/8 @FEUP

The 2023 edition of INForum, now in its 14th edition, will be held at the Faculty of Engineering of the University of Porto on September 7 and 8, with the local organization by Jácome Cunha, João Paulo Fernandes, João Pascoal Faria and Rui Maranhão, Professors at DEI, and João Saraiva from the University of Minho.

Bringing together the national community, INForum is a privileged place for the dissemination, discussion and recognition of scientific work and innovation and technological advances in Computer Science. INForum thus offers a specialised stage to promote, on the one hand, the exchange of knowledge and experience between academia and industry and, on the other hand, the debut of young researchers looking for dissemination, constructive criticism and encouragement of their work. INForum is therefore a national event for sharing and strengthening community spirit.

Computer Science is a consolidated area of Research and Development in Portugal, supported by a network of internationally recognised research centres and the offer of undergraduate and postgraduate courses by practically all Portuguese higher education institutions. It is also an area in which several Portuguese companies present R&D results of international relevance.

INForum is organised in thematic sessions on topics proposed by the community and selected by the organisation. The topics have their own Programme Committees (PC), which liaise with the Chairs of the Programme Committee in the processes of organising the sessions (call for submissions, review and selection of papers, publication of proceedings, etc.) in order to take advantage of a single support infrastructure and guarantee the coherence of the event.

This edition will also feature keynotes from Cristina Videira Lopes (Chancellor’s Professor at the University of California, Irvine) and Pedro Saleiro (Senior Director of AI Research at Feedzai).

* O Fim da Programação (como a conhecemos)

“Cristina (Crista) Lopes é Chancellor’s Professor na School of Information and Computer Sciences at University of California, Irvine, com interesses de investigação em Linguagens de Programação, Engenharia de Software e Ambientes Virtuais Distribuídos. É IEEE Fellow e ACM Distinguished Scientist. Ela é a vencedora do Prêmio Pizzigati de 2016 para Software de Interesse Público pelo seu trabalho na plataforma de mundo virtual OpenSimulator. O seu livro ‘Exercises in Programming Style’ recebeu críticas excelentes, incluindo ter sido escolhido como ‘Livro Notável’ pelas revisões do ACM Best of Computing.”

** Innovating from within: AI Research at Feedzai

“Pedro Saleiro is Senior Director of Research at Feedzai where he heads the AI research group. Before joining Feedzai in 2019, Pedro did a postdoc in Fair Machine Learning at the University of Chicago and he was a research data scientist at the Center for Data Science and Public Policy working with Rayid Ghani. During his time at UChicago, he co-developed Aequitas, the first open-source library to audit bias and fairness of decision-making systems. Pedro holds a PhD in Machine Learning from University of Porto.”

The conference programme can be found here.

PhD Defense in Informatics Engineering: ”Scaling-up organization of document sets to facilitate their analysis”

Candidate:
Rui Portocarrero Macedo de Morais Sarmento

Date, Time and Place:
July 24, 14:00, Sala de Atos DEGI (L202A), FEUP

President of the Jury:
Carlos Manuel Milheiro de Oliveira Pinto Soares, PhD, Associate Professor, Departamento de Engenharia Informática, Faculdade de Engenharia da Universidade do Porto.

Members:
José Fernando Ferreira Mendes, PhD, Full Professor, Departamento de Física, Universidade de Aveiro;
Bruno Emanuel da Graça Martins, PhD, Associate Professor, Departamento de Engenharia Electrotécnica e de Computadores, Instituto Superior Técnico da Universidade de Lisboa;
Pavel Bernard Brazdil, PhD, Emeritus Professor, Faculdade de Economia, Universidade do Porto (Co-Supervisor);
Henrique Daniel de Avelar Lopes Cardoso, PhD, Associate Professor, Departamento de Engenharia Informática, Faculdade de Engenharia da Universidade do Porto;
Sérgio Sobral Nunes, PhD, Associate Professor, Departamento de Engenharia Informática, Faculdade de Engenharia da Universidade do Porto.

The thesis was supervised by João Manuel Portela da Gama, PhD, Full Professor at Faculdade de Economia da Universidade do Porto.

Abstract:

“The summarization and organization of document production of an organization in an intuitive and scalable way for massive amounts of data is of great importance in supporting decision-making.

This thesis intends to develop a theoretical and practical study to solve these challenges. The contents of this thesis were born after developing a static software prototype to analyze and provide decision support from text documents and a network of authors of scientific documentation. Several advantages were proved from the use of this mentioned prototype. Nonetheless, there were some concerns regarding the prototype’s ability to cope with higher dimensional networks and also a massive amount of documents. The development case study considers the affinity between authors on a large scale and constantly evolving. The first challenge is to scale the representation methods of documents of the authors. The second challenge is to capture the temporal development of the organization. Considering this context, we developed and implemented streaming techniques for the characterization of each author and other sub-units of the organization. Thus, by integrating into affinity groups identified by keywords and relevance measures that characterize them. We have finished this work by testing several developed algorithms to minor the disadvantages of the original prototype and gathering a panoply of solutions for problems related to text streaming techniques, considering a large-scale approach for the corresponding analysis. Information Retrieval techniques were used, and the analysis of social networks and streaming data was necessary. We solved several associated issues with efficient text streams analysis, using several techniques from pure streams analysis techniques to evolving complex networks techniques. These techniques that served as a base to innovation and contribution with more than ten new algorithms proved to improve the prototype and solve the issues that initially drove us to improve and contribute to several related areas of text analysis and streams.”

keywords: Streaming; Text Mining; Social network Analysis; Social network Visualization.

We are pleased to announce that ASAP 2023 will be an entirely in-person event hosted at the Faculty of Engineering of the University of Porto!

The 34th IEEE International Conference on Application-specific Systems, Architectures, and Processors (ASAP 2023) is organized by the Faculty of Engineering of the University of Porto in Porto, Portugal, July 19 – July 21, 2023.

The history of the ASAP conference traces back to the International Workshop on Systolic Arrays, organized in 1986 in Oxford, UK. It later developed into the International Conference on Application-Specific Array Processors. With its current title, it was organized for the first time in Chicago, USA, in 1996. Since then, it has alternated between Europe and North America.

PhD Defense in Digital Media: ”Modelo para utilização da prosódia e da interacção no acesso às expressões matemáticas através da fala sintetizada para pessoas com deficiência visual”

Candidate:
Adriana Silva Souza

Date, time and place:
July 10, 10:30,  Sala de Atos FEUP

President of the Jury:
António Fernando Vasconcelos Cunha Castro Coelho, PhD, Associate Professor with Habilitation, Faculdade de Engenharia da Universidade do Porto.

Members:
Vitor Manuel Pereira Duarte dos Santos, PhD, Assistant Professor, NOVA Information Management School, Universidade Nova de Lisboa;
João Manuel Pereira Barroso, PhD, Associate Professor with Habilitation, Vice-Reitor para a Inovação, Transferência de Tecnologia e Universidade Digital, Universidade de Trás-os-Montes e Alto Douro;
João Paulo Ramos Teixeira, PhD, Coordinator Professor, Departamento de Eletrotecnia, Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Bragança;
Maria Selene Henriques da Graça Vicente, PhD, Assistant Professor, Departamento de Psicologia, Faculdade de Psicologia e de Ciências da Educação da Universidade do Porto;
Maria do Rosário Marques Fernandes Teixeira de Pinho, PhD, Associate Professor, Departamento de Engenharia Eletrotécnica e de Computadores, Faculdade de Engenharia da Universidade do Porto;
Diamantino Rui da Silva Freitas, PhD, Associate Professor, Departamento de Engenharia Eletrotécnica e de Computadores, Faculdade de Engenharia da Universidade do Porto (supervisor).

Abstract:

“The synthesized speech of mathematical contents still presents several challenges. For Mathematics to be understood by people with visual impairment, it needs to be verbalized in detail, which generates long outputs and causes cognitive overload; in addition, Mathematics has quite peculiar rules. Therefore, most of the time, prosodic limits such as pauses, and intonation are not adequately synthesized. This investigation proposes a model that uses prosody and interaction to access mathematical expressions to minimize the problems mentioned. We relied on the Design-Based Research methodology to develop the model and divided the study into four stages. In the first stage, a systematic literature review was carried out. We conducted an initial exploration investigation with interviews with students with visual impairments and braille teachers and analyzed the mathematics spoken by speech synthesizers. In the second stage of the investigation, a corpus of mathematical expressions spoken by math professors was created to support prosody research. Intonation and pauses were the investigated prosodic components. Although the studies have yet to go into intonation in-depth, we did some tests of prosodic modulation of the fundamental frequency, highlighting stretches of mathematical expressions according to the level in the MathML tree. Concerning pauses, we identified their main patterns in mathematical expressions. We also performed an eye-tracking experiment with sighted people to understand the cognitive processes surrounding mathematical expressions’ observation, analysis, and processing. In the third stage, a linear regression model which calculates the pauses for mathematical expressions dynamically was created and evaluated with visually impaired students. The results showed advances regarding the solutions found, perceived mainly when the mathematical expressions are unfamiliar to the students. The results of the eye tracking experiment showed that in addition to the complexity of the mathematical expression, it was necessary to propose a new formal concept that was called diversity, quantifying this subjective property of the structures of expressions because it was found that it also impacts during the cognitive processing of expressions. Data analysis provided clues for creating the interaction model that uses diversity to control the cognitive load in accessing mathematical expressions during the process. The evaluation of the model with visually impaired people showed an advance concerning existing works since students performed better when accessing mathematical expressions with the model. In the fourth stage, we made the final proposition of the model based on the assessment of people with visual impairments. The results achieved in this investigation allow greater autonomy in the reading of mathematical expressions; people with visual impairment can govern the interaction in the auditory access according to the need to reinforce their memory; in addition, it can reduce the time in the manipulation of mathematical expressions compared to traditional tools, improve the writing process, since reading is linked to writing and relieve the student’s memory. In addition to these contributions, we can also highlight the discovery of the new diversity parameter, which is strongly related to the cognitive processing of expressions. In general, these contributions make it possible to improve and develop mathematics education, particularly in the teaching-learning process of visually impaired people, making them more autonomous beings, which, in addition to scientific contributions, can also generate social and economic impacts arising from accessibility.”

Keywords: Synthesized Speech, Mathematics, Accessibility, Visual Impairment, Complexity, Diversity.